12th International Conference on Latent Variable Analysis and Signal Separation
August 25 - 28, 2015 | Liberec, Czech Republic

PROGRAM
LVA/ICA 2015 is the 12th in a series of international conferences which have attracted hundreds of researchers and practitioners over the years. Since its start in 1999 and under the banner of Independent Component Analysis and Blind Source Separation (ICA), the conference has continuously broadened its horizons. Today it encompasses a host of additional forms and models of general mixtures of latent variables. Theories and tools borrowing from the fields of signal processing, applied statistics, machine learning, linear and multilinear algebra, numerical analysis and optimization, and numerous application fields offer exciting interdisciplinary interactions. The conference is to be held on August 25 – 28, 2015 in Liberec, Czech Republic.

GOLD SPONSORS

TECHNICAL UNIVERSITY OF LIBEREC
www.tul.cz

SILVER SPONSORS

Contacting persons for Sony:
Asia-Pacific: Yuhki.Mitsufuji@jp.sony.com
Europe: Thomas.Kemp@eu.sony.com

Yuki Mitsufuji
GENERAL INFORMATION

DATE

CONFERENCE VENUE
Technical University of Liberec
Studentská 1402/2, 461 17 Liberec 1, Czech Republic
Building G
www.tul.cz/en

ORGANIZER
The 12th International Conference on Latent Variable Analysis and Signal Separation – LVA/ICA 2015 – is organized by the Technical University of Liberec on the occasion of the 20th anniversary of the Faculty of Mechatronics, Informatics, and Interdisciplinary Studies.

ORGANIZING COMMITTEE

General chairs
Zbyněk Koldovský | Technical University of Liberec, Czech Republic
Petr Tichavský | The Czech Academy of Sciences, Czech Republic

Program chairs
Arie Yeredor | Tel–Aviv University, Israel
Emmanuel Vincent | Inria, France

Special sessions chair
Shoji Makino | University of Tsukuba, Japan

Overseas liaison
Andrzej Cichocki | RIKEN, Japan

SiSEC evaluation chair
Nobutaka Ono | National Institute of Informatics (NII) / SOKENDAI, Japan

AUDIO AWARD
The best student paper from the field of audio signal processing will receive a $500 award sponsored by CONEXANT.

PROCEEDINGS
The proceedings are published in Springer – Verlag’s Lecture Notes in Computer Science Series (LNCS).

TAXI LIBEREC | City Taxi Liberec
Phone: 00420 485 104 112 | 00420 482 313 961 | 00420 482 312 171 | 00420 482 311 151
| 00420 482 311 152 | 00420 724 281 722
E-mail: info@citytaxilbc.cz
Tuesday, August 25, 2015
Welcome reception at Hotel and Restaurant „Above the Clouds“(Ještěd)
18.30 – departure from the conference venue
22.00 – closing

Ještěd is a symbol of the Liberec Region with an elevation of 1012 meters above sea level. It dominates northern Bohemia. The Ještěd transmission tower earned Karel Hubáček the prestigious Perret Prize. Thanks to its unique architecture the tower has become a national cultural monument and building of the century.

Thursday, August 27, 2015
Social evening at Hotel Panský dům and Pyramida in the picturesque Jizerka valley. Bus transport will be provided.
18.00 – departure from the conference venue
23.00 – closing
Role of Diversity in Source Separation: Theory and Applications

Tülay Adali
University of Maryland, Baltimore County, USA

Abstract: Independent component analysis (ICA) has been the most popular approach for solving the blind source separation problem. Starting from a simple linear mixing model and the assumption of statistical independence, ICA can recover a set of linearly–mixed sources to within a scaling and permutation ambiguity. It has been successfully applied to numerous data analysis problems in areas as diverse as biomedicine, communications, finance, geophysics, and remote sensing. ICA can be achieved using different types of diversity - statistical property - and, as demonstrated in this talk, can be posed to simultaneously account for multiple types of diversity such as higher - order - statistics, sample dependence, non–circularity, and nonstationarity. A recent generalization of ICA, independent vector analysis (IVA), generalizes ICA to multiple data sets and adds the use of one more type of diversity, statistical dependence across the data sets, for jointly achieving independent decomposition of multiple data sets. With the addition of each new diversity type, identification of a broader class of signals become possible, and in the case of IVA, this includes sources that are independent and identically distributed Gaussians. This talk reviews the fundamentals and properties of ICA and IVA when multiple types of diversity are taken into account, and then asks the question whether diversity plays an important role in practical applications as well. Examples from various domains are presented to argue that in many scenarios it might be worthwhile to jointly account for multiple statistical properties.

Tülay Adali received the Ph.D. degree in Electrical Engineering from North Carolina State University, Raleigh, NC, USA, in 1992 and joined the faculty at the University of Maryland Baltimore County (UMBC), Baltimore, MD, USA, the same year. She is currently a professor in the Department of Computer Science and Electrical Engineering at UMBC. She has held visiting positions at École Supérieure de Physique et de Chimie Industrielles, Paris, France, Technical University of Denmark, Lyngby, Denmark, Katholieke Universiteit, Leuven, Belgium, and University of Campinas, Brazil. Prof. Adali assisted in the organization of a number of international conferences and workshops including the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), the IEEE International Workshop on Neural Networks for Signal Processing (NNSP), and the IEEE International Workshop on Machine Learning for Signal Processing (MLSP). She was the General Co–Chair, NNSP (2001–2003); Technical Chair, MLSP (2004–2008); Program Co–Chair, MLSP (2008 and 2009), 2009 International Conference on Independent Component Analysis and Source Separation; Publicity Chair, ICASSP (2000 and 2005); and Publications Co–Chair, ICASSP 2008.

Prof. Adali is a Fellow of the IEEE and the AIMBE, recipient of a 2010 IEEE Signal Processing Society Best Paper Award, 2013 University System of Maryland Regents’ Award for Research, and an NSF CAREER Award. She was an IEEE Signal Processing Society Distinguished Lecturer for 2012 and 2013. Her research interests are in the areas of statistical signal processing, machine learning for signal processing, and biomedical data analysis.

Projections, Learning, and Sparsity for Efficient Data Processing

Rémi Gribonval

Inria, Rennes, France

Abstract: Sparse models are at the core of many research domains where the large amount and high–dimensionality of digital data requires concise data descriptions for efficient information processing. Recent breakthroughs have demonstrated the ability of these models to provide concise descriptions of complex data collections, together with algorithms of provable performance and bounded complexity. A flagship application of sparsity is the paradigm of compressed sensing, which exploits sparsity for data acquisition using limited resources (e.g. fewer/less expensive sensors, limited energy consumption, etc.). Besides sparsity, a key pillar of compressed sensing is the use of random low–dimensional projections.

Compressive sensing has been historically developed and successfully applied on sparse finite–dimensional signals, allowing to recover such signals from far fewer measurements than the ambient dimension. With the maturity of the theory has come the will to apply these paradigms to more general classes of signals, such as low–rank matrices, elements living in a general union of sub–spaces. Machine learning and kernel methods even call for the application of these ideas to functions.

In this talk I will draw a panorama of recent generalizations of sparse recovery guarantees and compressive sensing to the context of machine learning. Assuming some low–dimensional model on the probability distribution of the data, we will see that in certain scenarios it is indeed possible to (randomly) compress a large data–collection into into a reduced representation, of size driven by the complexity of the learning task, while preserving the essential information necessary to process it. Two case studies will be given: compressive clustering, and compressive Gaussian Mixture Model estimation, with an illustration on speaker verification.
Rémi Gribonval holds a Directeur de Recherche position with Inria in Rennes, France, where he is the scientific leader of the PANAMA research group on sparse audio signal processing. His research focuses on the mathematical and algorithmic aspects of signal processing & machine learning, with an emphasis on the interplay between low–dimensional models and inverse problems in high–dimensions. He founded the series of international workshops SPARS on Signal Processing with Adaptive/Sparse Representations. He has been the coordinator of several national, bilateral and European research projects. In 2011, he was awarded the Blaise Pascal Award of the GAMNI–SMAI by the French Academy of Sciences, and a starting investigator grant from the European Research Council. He is an IEEE fellow.

Deep Neural Networks for Supervised Speech Separation

DeLiang Wang | The Ohio State University, USA

Abstract: Speech separation, or the cocktail party problem, is a widely acknowledged challenge in speech and signal processing. Motivated by the auditory masking phenomenon, we have suggested the ideal binary mask (IBM) as a main goal for speech separation. This leads to a new formulation of the separation problem as supervised classification where time–frequency (T–F) units are classified into two classes: those dominated by the target speech and the rest. This formulation opens speech separation to modern machine learning techniques, and deep neural networks (DNN) are particularly well–suited for this problem due to their strong representational capacity. DNN–based IBM estimation elevates speech separation performance to a new level, and produces the first demonstration of substantial speech intelligibility improvements for both hearing–impaired and normal–hearing listeners in background noise. DNN–based separation is not limited to binary asking, and we have examined a number of training targets and found that ratio masking can be preferable in terms of speech quality, and T–F masking in general outperforms spectral mapping.

DeLiang Wang received the B.S. degree and the M.S. degree from Peking (Beijing) University and the Ph.D. degree in 1991 from the University of Southern California all in computer science. Since 1991, he has been with the Department of Computer Science & Engineering and the Center for Cognitive and Brain Sciences at The Ohio State University, where he is a Professor. He was a visiting scholar in the Department of Psychology at Harvard University from 1998 to 1999, and at Oticon A/S in Denmark from 2006 to 2007. Wang’s research interests include machine perception and neurodynamics. He received the Office of Naval Research Young Investigator Award in 1996, the 2005 Outstanding Paper Award from IEEE Transactions on Neural Networks, and the 2008 Helmholtz Award from the International Neural Network Society. He was named the University Distinguished Scholar by Ohio State University in 2014. He is an IEEE Fellow, and currently serves as Co–Editor–in–Chief of Neural Networks.
CONFERENCE PROGRAM

TUESDAY, AUGUST 25, 2015

17.00 – 18.30 REGISTRATION
18.30 Bus departure to welcome reception
19.00 – 22:00 Welcome reception at Hotel and Restaurant „Above the Clouds“ | Ještěd

WEDNESDAY, AUGUST 26, 2015

9.00 – 9.20 OPENING

9.20 – 10.20 KEYNOTE 1 | Chair: Shoji Makino
 1. Deep Neural Networks for Supervised Speech Separation
 DeLiang Wang

10.20 – 10.40 Coffee break

10.40 – 12.20 ORAL SESSION 1 | Chair: Lieven De Lathauwer
Special Session: Tensor–Based Methods for Blind Signal Separation
 2. Stochastic and Deterministic Tensorization for Blind Signal Separation
 Otto Debals, Lieven De Lathauwer
 3. Block–Decoupling Multivariate Polynomials Using the Tensor Block–Term Decomposition
 Philippe Dreesen, Thomas Goossens, Mariya Ishteva, Johan Schoukens
 4. A Polynomial Formulation for Joint Decomposition of Symmetric Tensors of Different Orders
 Pierre Comon, Yang Qi, Konstantin Usevich
 5. Rank Splitting for CANDECOMP/PARAFAC
 Anh–Huy Phan, Petr Tichavsky, Andrzej Cichocki
 6. Some Rank Conditions for the Identifiability of the Sparse Paralind Model
 Sebastian Miron, David Brie

12.20 – 13.40 Lunch break

13.40 – 15.40 POSTER SESSION 1
Special Session: Tensor–Based Methods for Blind Signal Separation
 P1. Tensors and Latent Variable Models
 Mariya Ishteva
P2. A Robust Tensor Factorisation Approach for Separation of Convolutive Complex Communication Signals
 Samaneh Kouchaki, Saeid Sanei

 Jianshu Zhang, Ahmad Nimr, Kristina Naskovska, Martin Haardt

Special Session: Deep Neural Networks for Supervised Speech Separation/Enhancement

P4. Improving Deep Neural Network Based Speech Enhancement in Low SNR Environments
 Tian Gao, Jun Du, Yong Xu, Cong Liu, Li–Rong Dai, Chin–Hui Lee

P5. Noise Perturbation Improves Supervised Speech Separation
 Jitong Chen, Yuxuan Wang, DeLiang Wang

P6. Speech Enhancement with LSTM Recurrent Neural Networks and Its Application to Noise–Robust ASR
 Felix Weninger, Hakan Erdogan, Shinji Watanabe, Emmanuel Vincent, Jonathan Le Roux, John Hershey, Björn Schuller

P7. Adaptive Denoising Autoencoders: A Fine–Tuning Scheme to Learn from Unknown Sources
 Minje Kim, Paris Smaragdis

Regular posters

P8. Blind Separation of Mixtures of Piecewise AR(1) Processes and Model Mismatch
 Petr Tichavsky, Ondřej Šembera, Zbyněk Koldovsky

P9. Linear Discriminant Analysis with Persistent Regularization
 Hideitsu Hino

P10. Estimating Correlation Coefficient Between Two Complex Signals Without Phase Observation
 Shigeki Miyabe, Nobutaka Ono, Shoji Makino

 Marie Daňková, Pavel Rajmic, Radovan Jiřík

P12. Decomposition–Based Compression of Ultrasound Raw–Data
 Yael Yankelevsky, Arie Feuer, Zvi Friedman

15.40 – 16.00 Coffee break

16.00 – 17.40 ORAL SESSION 2 | Chair: Dana Lahat

Special Session: Joint Analysis of Multiple Datasets, Data Fusion, and Related Topics

 Dana Lahat, Christian Jutten

8. Joint Decompositions with Flexible Couplings
 Rodrigo Cabral Farias, Jérémy Emile Cohen, Christian Jutten, Pierre Comon
9. Learning Coupled Embedding Using MultiView Diffusion Maps
 Ofir Lindenbau, Arie Yeredor, Moshe Salhov

10. Extraction of Temporal Patterns in Multi–rate and Multi–modal Datasets
 Antoine Liutkus, Umut Simsekli, Taylan Cemgil

 Israel–Dejene Gebru, Sileye Ba, Georgios Evangelidis, Radu Horaud

THURSDAY, AUGUST 27, 2015

9.00 – 10.00 KEYNOTE 2 | Chair: Mark Plumbley

12. Projections, Learning, and Sparsity for Efficient Data Processing
 Rémi Gribonval

10.00 – 10.20 Coffee break

10.20 – 12.20 ORAL SESSION 3

Special Session: Advances in Nonlinear Blind Source Separation | Chair: Yannick Deville

 Yannick Deville, Leonardo Tomazeli Duarte

 Ivica Kopriva, Sanja Kapitanović, Tamara Čačev

15. Source Separation in Post–Nonlinear Mixtures by Means of Monotonic Networks
 Leonardo Tomazeli Duarte, Filipe de Oliveira Pereira, Romís Attux, Ricardo Suyama, João Marcos Travassos Romano

Special Session: Sparse and Low–Rank Modeling for Acoustic Signal Processing | Chairs: Afsaneh Asaei and Sharon Gannot

16. Study on Manifolds of Acoustic Responses
 Bracha Laufer Goldshtein, Ronen Talmon, Sharon Gannot

 Jian Guan, Jing Dong, Xuan Wang, Wenwu Wang

18. A Local Model of Relative Transfer Functions Involving Sparsity
 Zbyněk Koldovský, Jakub Janský, Francesco Nesta

12.20 – 13.40 Lunch break
13.40 – 15.40 POSTER SESSION 2

Special Session: Advances in Nonlinear Blind Source Separation

P13. From Blind Quantum Source Separation to Blind Quantum Process Tomography
Yannick Deville, Alain Deville

Bahram Ehsandoust, Massoud Babaie–Zadeh, Christian Jutten

Special Session: Sparse and Low–Rank Modeling for Acoustic Signal Processing

P15. Improving Relative Transfer Function Estimates Using Second–Order Cone Programming
Zbyněk Koldovský, Jiří Málek, Petr Tichavský

Ivan Markovsky

P17. Sparsity and Cosparse for Audio Declipping: a Flexible Non–Convex Approach
Srdan Kitic, Nancy Bertin, Rémi Gribonval

P18. Joint Audio Inpainting and Source Separation
Cagdas Bilen, Alexey Ozerov, Patrick Perez

P19. Audio Source Separation with Discriminative Scattering Networks
Pablo Sprechmann, Joan Bruna, Yann LeCun

Regular posters

P20. Theoretical Studies and Algorithms Regarding the Solution of Non–Invertible Nonlinear Source Separation
David Baptista, Rafael Assato Ando, Leonardo Tomazeli Duarte, Christian Jutten, Romis Attux

P21. Patchworking Multiple Pairwise Distances for Learning with Distance Matrices
Ken Takano, Hideitsu Hino, Yuki Yoshikawa, Noboru Murata

P22. A Block–Jacobi Algorithm for Non–Symmetric Joint Diagonalization of Matrices
Hao Shen, Martin Kleinsteuber

P23. An Affine Equivariant Robust Second–Order BSS Method
Pauliina Ilmonen, Klaus Nordhausen, Hannu Oja, Fabian Theis

Tianwen Wei

15.40 – 16.00 Coffee break
16.00 – 17.20 ORAL SESSION 4 | Chair: Felix Weninger

Audio

Nobutaka Ono, Daichi Kitamura, Zafar Rafii, Nobutaka Ito, Antoine Liutkus

20. A Geometrically Constrained Independent Vector Analysis Algorithm for Online Source Extraction
Affan Khan, Maja Taseska, Emanuel Habets

21. On-line Multichannel Estimation of Source Spectral Dominance
Francesco Nesta, Trausti Thormundsson, Zbyněk Koldovský

22. Component-Adaptive Priors for NMF
Julian Becker, Christian Rohlfing

18:00 Bus departure to social evening

19:00 – 23:00 Social evening at Hotel Panský dům and Pyramida in the Jizerka valley

FRIDAY, AUGUST 28, 2015

9.00 – 10.00 KEYNOTE 3 | Chair: Petr Tichavský

23. Role of Diversity in Source Separation: Theory and Applications
Tülay Adali

10.00 – 10.20 Coffee break

10.20 – 12.20 POSTER SESSION 3

Andrew Simpson, Gerard Roma, Mark Plumbley

25. Evaluation of the Convolutional NMF for Supervised Polyphonic Music Transcription and Note Isolation
Stanislaw Gorlow, Jordi Janer

26. Masked Positive Semi-Definite Tensor Interpolation
Dave Betts

27. On the Suppression of Noise from a Fast Moving Acoustic Source using Multimodality
Wendyam Serge Boris Ouedraogo, Bertrand Rivet, Christian Jutten

28. Speaker Verification using Adaptive Dictionaries in Non-Negative Spectrogram Deconvolution
Szymon Drgas, Tuomas Virtanen
29. Towards Individualized Spatial Audio via Latent Variable Modeling
 Eric Schwenker

30. A MAP–based Order Estimation Procedure for Sparse Channel Estimation
 Sajad Daei, Massoud Babaie–Zadeh, Christian Jutten

31. Bayesian Blind Source Separation with Unknown Prior Covariance
 Ondřej Tichý, Vaclav Smidl

32. Convex Recovery of Tensors using Nuclear Norm Penalization
 Stephane Chrétien, Tianwen Wei

33. Split Gradient Method for Informed Non–negative Matrix Factorization
 Robert Chreiky, Gilles Delmaire, Matthieu Puigt, Gilles Roussel, Dominique Courcot, Antoine Abche

12.20 – 13.40 Lunch break

13.40 – 15.00 ORAL SESSION 5 | Chair: Ivica Kopriva

Dictionary and Manifold Learning

34. A Dictionary Learning Method for Sparse Representation Using a Homotopy Approach
 Milad Niknejad, Mostafa Sadeghi, Massoud Babaie–Zadeh, Hossein Rabbani, Christian Jutten

35. Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning
 Xian Wei, Martin Kleinsteuber, Hao Shen

36. Robust Structured Low–Rank Approximation on the Grassmannian
 Clemens Hage, Martin Kleinsteuber

15.00 – 16.20 ORAL SESSION 6 | Chair: Anh Huy Phan

Biomedical and Other Applications

37. Blind Separation of Surface Electromyographic Mixtures from Two Finger Extensor Muscles
 Anton Dogadov, Christine Servière, Franck Quaine

38. Multivariate Fusion of EEG and Functional MRI Data using ICA: Algorithm Choice and Performance Analysis
 Yuri Levin–Schwartz, Vince Calhoun, Tulay Adali

 Clément Dorffer, Matthieu Puigt, Gilles Delmaire, Gilles Roussel

40. Texture Retrieval Using Scattering Coefficients and Probability Product Kernels
 Alexander Sagel, Dominik Meyer, Hao Shen

16.20 – 16.30 Closing
LIST OF PARTICIPANTS

Tülay ADALI | University of Maryland, Baltimore, USA
Sara AHMADI | Radboud University Nijmegen, Netherlands
Mohammad AL DMOUR | CEDAR Audio, Cambridge, United Kingdom
Liutkus ANTOINE | Inria, Villers-lès-Nancy, France
Rafael ASSATO ANDO | GIPSA-Lab, Grenoble, France
Massoud BABAIE-ZADEH | Sharif University of Technology, Tehran, Iran
Julian M. BECKER | RWTH Aachen University, Institut für Nachrichtentechnik, Germany
Dave BETTS | CEDAR Audio, Cambridge, United Kingdom
Cagdas BILEN | Technicolor, Cesson-Sevigne, France
Joan BRUNA | University of California, Berkeley, San Francisco, USA
Rodrigo CABRAL FARIAS | Université Grenoble Alpes, CNRS, GIPSA-Lab Saint-Martin-d’Hères, France
Marie DAŇKOVÁ | Brno University of Technology, FEEC, Czech Republic
Lieven DE LATHAUWER | KU Leuven, Kortrijk, Belgium
Otto DEBALS | KU Leuven, Belgium
Gilles DELMAIRE | LISIC ULCO, Calais, France
Yannick DEVILLE | University of Toulouse, France
Anton DOGADOV | Université Grenoble Alpes, CNRS, GIPSA-Lab Saint-Martin-d’Hères, France
Szymon DRGAS | Poznan University of Technology, Poland
Jun DU | University of Science and Technology of China Hefei, China
Bahram EHSANDOUST | Université Joseph Fourier, GIPSA Lab, Saint-Martin-d’Hères, France
Sharon GANNOT | Bar-Ilan University, Ramat-Gan, Israel
Israel Dejene GEBRU | Inria, Montbonnot, France
Emad Mounir Grais GIRGIS | University of Surrey, Guildford, United Kingdom
Stanislaw GORLOW | Sony CSL, Paris, France
Rémi GRIBONVAL | PANAMA Research Group, IRISA, Rennes, France
Jian GUAN | Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
Martin HAARDT | Ilmenau University of Technology, Germany
Emanuël HABETS | International Audio Laboratories, Erlangen, Germany
Clemens HAGE | Technical University of Munich, Germany
Hideitsu HINO | University of Tsukuba, Ibakari, Japan
Radu HORAUD | Inria, Montbonnot, France
Pauliina ILMONEN | Aalto University School of Science, Finland
Mariya ISHTEVA | Vrije Universiteit Brussel, Belgium
Jakub JANSKÝ | Technical University of Liberec, Czech Republic
Hyonam JOO | Hoseo University, Asan City, Chungnam, Korea
Affan KHAN | International Audio Laboratories Erlangen, Germany
Minje KIM | University of Illinois at Urbana-Champaign, Urbana, USA
Srdjan KITIC | Inria, Rennes, France
Zbyněk KOLDOVSKÝ | Technical University of Liberec, Czech Republic
Ivica KOPRIVA | Ruder Boskovic Institute, Zagreb, Croatia
Dionyssos KOUNADES | Inria, Montbonnot, France
Dana LAHAT | GIPSA-Lab, Saint-Martin-d’Hères, France
Bracha LAUFER GOLDSHITEIN | Bar-Ilan University, Givat Shmuel, Israel
Yuri LEVIN-SCHWARTZ | University of Maryland, Baltimore, USA
Haim LINDEN | TA University, Haida, Israel
Ofir LINDENBAUM | Tel Aviv University, Israel
Nilesh MADHU | NXP Software, Heverlee, Belgium
Shoji MAKINO | University of Tsukuba, Ibaraki, Japan
Jiří MÁLEK | Technical University of Liberec, Czech Republic
Ivan MARKOVSKY | Vrije Universiteit, Brussel, Belgium
Sebastian MIRON | Centre de Recherche en Automatique de Nancy, Vandoeuvre-les-Nancy, France
Yuki MITSUFUJI | Sony Corporation, Tokyo, Japan
Shigeki MIYABE | University of Tsukuba, Ibaraki, Japan
Michael MÜLLER | Technical University of Liberec, Czech Republic
Kristina NASKOVSKA | Ilmenau University of Technology, Germany
Francesco NESTA | Conexant System, Irvine, USA
Kenji ONAKA | Asahi Kasei Corporation, Atsugi-shi, Kanagawa, Japan
Nobutaka ONO | National Institute of Informatics, Tokyo, Japan
Boris OUEDRAOGO | Université Josef Fourier, GIPSA Lab, Saint-Martin-d’Hères, France
Anh Huy PHAN | Brain Science Institute, RIKEN, Wako-shi, Japan
Mark PLUMBLEY | University of Surrey, Guildford, United Kingdom
Matthieu PUIGT | LISIC ULCO, Calais, France
Pavel RAJMIC | Brno University of Technology, Czech Republic
Christian ROHLFING | RWTH Aachen University, Institut für Nachrichtentechnik, Germany
Gerard ROMA | University of Surrey, Guildford, United Kingdom
Alexander SAGEL | Technical University of Munich, Germany
Saeid SANEI | University of Surrey, Guildford, United Kingdom
Matthias SEIBERT | Technical University of Munich, Germany
Hao SHEN | Technical University of Munich, Germany
Alexey SHOLOKHOV | University of Eastern Finland, Joensuu, Finland
Andrew SCHWARTZ | 3Play Media, Jamaica Plain, USA
Eric SCHWENKER | Air Force Research Labs / Battlespace Acoustics, Beavercreek Township, OH, USA
Andrew SIMPSON | University of Surrey, Guildford, United Kingdom
Fabian-Robert STÖTER | International Audio Laboratories Erlangen, Germany
Ondřej ŠEMBERA | Institute of Information Theory and Automation of the CAS, Prague, Czech Republic
Ken TAKANO | Waseda University, Tokyo, Japan
Petr TICHAVSKY | Institute of Information Theory and Automation of the CAS, Prague, Czech Republic
Ondřej TICHÝ | Institute of Information Theory and Automation of the CAS, Prague, Czech Republic
Leonardo TOMAZELI DUARTE | University of Campinas, Limeira, Brazil
Stefan UHLICH | Sony Deutschland, Stuttgart, Germany
Konstantin USEVICH | Université Grenoble Alpes, CNRS, GIPSA-Lab, Saint-Martin-d’Hères, France
DeLiang WANG | Ohio State University, Columbus, OH, USA
Tianwen WEI | Université de Franche-Comté, Besancon, France
Xian WEI | Technical University of Munich, Germany
Felix WENINGER | Technical University of Munich, Germany
Yael YANKELEVSKY | Technion, Haifa, Israel